Expression of Th1/Th2 cytokines in human blood after *in vitro* treatment with chlorpyrifos, and its metabolites, in combination with endotoxin LPS and allergen *Der p1*

Paurene Duramad,¹ Ira B. Tager,² John Leikauf,¹ Brenda Eskenazi² and Nina T. Holland¹

¹ Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, USA
² Division of Epidemiology, School of Public Health, University of California, Berkeley, California 94720, USA

Received 17 January 2006; Revised 6 March 2006; Accepted 26 May 2006

ABSTRACT: Exposure to organophosphate (OP) pesticides has been associated with respiratory symptoms and may be related to asthma; however, few studies have examined the molecular basis for these associations. Asthma and allergic disorders are characterized by elevated Th2 cytokines (IL-4, IL-5, IL-13), whereas the chronic inflammatory response in asthmatic airways is maintained by Th1 cytokine IFN-γ. The goal of this *in vitro* study was to examine the effects of OP chlorpyrifos (CPF), and its metabolites chlorpyrifos-oxon (CPO) and 3,5,6-trichloro-2-pyridinol (TCP), singly, and in combination with endotoxin lipopolysaccharide (LPS) or house dust mite *Dermatophagoides pteronyssinus* (*Der p1*) allergen, on expression of IFN-γ and IL-4, Th1 and Th2 signature cytokines, respectively. Cytokine expression was measured by ELISA and flow cytometry. Human blood cultures were treated with CPF/CPO/TCP (1–1000 µg ml⁻¹) and LPS (1.5–2.5 µg ml⁻¹) or *Der p1* (200 AU ml⁻¹) and supernatants were collected at 48 h. Pesticides CPF, CPO and TCP did not induce cytokine expression in *in vitro*, while LPS and *Der p1* induced IFN-γ and IL-4 expression, respectively. Whole blood cultures treated with low doses of CPO (1 and 10 µg ml⁻¹), in combination with LPS, expressed higher levels of IFN-γ than LPS alone (*P < 0.05*). While CPO increased LPS-dependent induction of IFN-γ, CPO treatment did not alter *Der p1* induction of IL-4. The interaction between CPO and LPS, which results in an increased type 1 immune response, should be investigated further, particularly since the combination of OP pesticides and endotoxin is common in rural, agricultural communities. Copyright © 2006 John Wiley & Sons, Ltd.

KEY WORDS: cytokines; chlorpyrifos; organophosphate pesticides; house mite allergen; endotoxin; whole blood culture; immunotoxicity mixtures; humans

Introduction

Pesticides and their metabolites are ubiquitous in the environment as a result of widespread agricultural and domestic use (Ware, 2004). Organophosphate (OP) pesticides constitute 70% of all insecticide products used in the United States and chlorpyrifos (CPF) was the most widely used OP prior to 2001 when EPA restricted its residential use (EPA, 2001). However, agricultural applications of CPF are still permitted and it is applied in large quantities throughout the world (Lemus and Abdelghani, 2000).

Studies of OP pesticide-induced toxicity have focused on carcinogenicity, genotoxicity and neurotoxicity (Banerjee, 1999), whereas a systematic approach to the evaluation of pesticide immunotoxicity still is being developed and validated (Colosio et al., 1999; Germolec, 2004). Immunotoxic effects of OP exposure that have been reported in both humans and animals include symptoms of hypersensitivity and immunosuppression (Voccia et al., 1999; Galloway and Handy, 2003). For example, applicators of CPF had impaired lymphocyte mitogenesis, increased levels of auto-antibodies, increased percentages of CD26-positive, but decreased CD5-positive thymocytes (Thrasher et al., 2002). Rats exposed to CPF had elevated percentages of CD5 and CD8 cells (Blakley et al., 1999), impaired T-cell, but not B-cell, blastogenesis (Navarro et al., 2001). Together, these findings suggest that CPF exposure is associated with alterations in immune cell profiles that could be markers for immunotoxicity.

Recently, exposure to CPF has been linked to the onset of respiratory, asthma-like symptoms in villagers in rural China (n = 22 528) exposed to OPs in occupational and environmental settings (Zhang et al., 2002), and to the onset of wheeze in a cohort of pesticide applicators (n = 10 246) in Iowa and North Carolina, USA (Hoppin et al., 2002). Induction of asthma and allergic
disorders is related to T-helper-2 (Th2) cytokines (IL-4, IL-5, IL-13) (Larche et al., 2003; Romagnani, 1994). In addition, the Th1 cytokine IFN-γ has been associated with the chronic inflammatory response in airways of people with severe asthma (Ngoc et al., 2005). This information can aid in an experimental study of the relation between CPF exposure and immunologic profiles that are associated with a predisposition to asthma.

To the best of our knowledge, no data on cytokine changes associated with CPF or its metabolites have been reported for human cell culture systems. In humans, CPF undergoes oxidative desulfuration by enzymes in the liver to form the toxic, intermediate product chlorpyrifos-oxon (CPO), which is hydrolysed mainly to 3,5,6-trichloro-2-pyridinol (TCP) (Nolan et al., 1984; Morgan et al., 2004). The only reported observation related to OPs is the signature cytokine (Mattern et al., 1994), whereas house dust mite allergen Dermatophagoides pteronyssinus (Der p1) is associated with Type 2 cytokine expression such as IL-4 (Comoy et al., 1998; Hammad et al., 2001; Charbonnier et al., 2003). Since both LPS and Der p1 are likely to be high in an agricultural setting (Braun-Fahrlander et al., 2002), the purpose of this study was to determine, in an in vitro system, whether exposure of human blood cultures to CPF, or its metabolites CPO and TCP, or to LPS endotoxin or Der p1 allergen alone and in combination was associated with changes in expression of Type 1 or Type 2 cytokine production.

Materials and Methods

Table 1 summarizes 19 independent experiments that were conducted from September 2003 to October 2004 on blood samples obtained from 14 human volunteers. Experiments 1–6 were performed to optimize the protocol to detect cytokine expression by ELISA in supernatants of whole blood cultures after treatment with pesticide CPF or metabolites (CPO, TCP), endotoxin and Der p1 allergen. Based on the results of experiments 1–6, experiments 7–14 were carried out with the same protocol to evaluate the intra- and inter-individual variability in cytokine responses to LPS and pesticides. Experiments 15–19 used the same treatment protocol to assess the effects of house dust mite allergen Der p1 treatment (singly and in combination with pesticides) on cytokine expression by ELISA; the results were confirmed by flow cytometric detection of intracellular Th1 (IFN-γ) and Th2 (IL-4) cytokine production.

Whole blood samples were obtained from healthy laboratory volunteers (n = 6; age 19–25; 3 male, 3 female) who were sampled repeatedly, for experiments 1–13, or were purchased (n = 8) from AllCells (Berkeley, CA) for experiments 14–19. Specimens were collected directly into vacutainers with heparin and processed within 2 h of collection.

Whole Blood and Isolated Lymphocyte Cultures

Whole blood was diluted 1:2 with 37 °C RPMI (CellGro) supplemented with l-glutamine 100 U ml⁻¹ and streptomycin (100 U ml⁻¹) and then aliquotted into 12 × 75 mm tubes (Becton Dickinson) in a 1 ml volume per tube. The tubes were placed in a culture rack, slanted at 45° to provide maximum surface area, and incubated at 37 °C, in 5% CO₂. At 48 h, the supernatants were collected and stored at −20 °C until further analysis. For isolated lymphocyte cultures, peripheral blood mononucleated cells (PBMCs) were isolated from fresh, heparinized venous blood by centrifugation over a Ficoll gradient, washed in 1X PBS and resuspended at 2 × 10⁶ cells ml⁻¹ in RPMI 1640 medium (Gibco) supplemented with 10% subject plasma, 1% penicillin and 1% streptomycin.

Treatment Protocols

Two hours after initiation of culture, cells were treated with vehicle controls (DMSO, Sigma, CO, USA), pesticide or pesticide metabolites (CPF/CPO/TCP, ChemService), lipopolysaccharide (LPS, Sigma), house dust mite antigen Dermatophagoides pteronyssinus (Der p1, Hollister-Stein, Washington, USA) or their combinations. Working concentrations of CPF/CPO/TCP (0.1–1 mg ml⁻¹) were dissolved in DMSO immediately before treatment. The lowest dose (1 µg ml⁻¹) selected for our in vitro experiments represented a realistic human exposure, as previously reported in human biomonitoring studies (Nolan et al., 1984; Whyatt et al., 2003) and thus, is of potential concern to agricultural communities where both OP and LPS exposures are common. The final concentration of DMSO in culture was set at 1% volume/volume.
Table 1. Summary of experiments conducted to evaluate effects of chlorpyrifos (CPF), chlorpyrifos-oxon (CPO), and (TCP) with and without endotoxin lipopolysaccharide (LPS) and house dust mite allergen *Dermatophagoides pteronyssinus* (*Der p1*) on Th1/Th2 cytokine expression

<table>
<thead>
<tr>
<th>Exp</th>
<th>Date</th>
<th>Subjects</th>
<th>Culture</th>
<th>Assay</th>
<th>Treatments: single</th>
<th>Treatments: combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>WB</td>
<td>IL</td>
<td>ELI</td>
<td>ICS</td>
</tr>
<tr>
<td>1</td>
<td>09.02.03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>09.11.03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>09.16.03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>10.09.03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>10.22.03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>12.02.03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>12.12.03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>03.03.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>03.12.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>05.24.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>05.26.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>06.01.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>06.02.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>08.24.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>09.08.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>09.14.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>09.22.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>10.05.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>10.19.04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

EXP, experiment number; WB, whole blood; IL, isolated lymphocytes; ELI, ELISA; ICS, intracellular cytokine staining; E, endotoxin; A, allergen; CPF, chlorpyrifos; CPO, chlorpyrifos-oxon; TCP, 3,5,6-trichloro-2-pyridinol.
Viability

To determine cell viability, 20 µl of culture suspension was added to 180 µl of 0.4% trypan blue. The percent viability was determined by division of the number of live cells by the total number of cells. The positive control phorbol-myristate-acetate (PMA)/ionomycin and LPS treatments had viabilities of 90% and 96%, respectively. Viability for CPO treatments of 1 and 10 µg ml⁻¹ were 98% and 93%, respectively, and declined to 88% with a dose of 100 µg ml⁻¹. Doses of 500 and 1000 µg ml⁻¹ were cytotoxic.

Cytokine ELISA

Cytokine-specific ELISA was performed with Biosource cytoset reagents in accordance with the manufacturer's instructions (Biosource, CA). Briefly, plates were coated with cytokine-specific capture antibody (5 µg ml⁻¹) and incubated overnight at 4 °C for 24 h. Standards (IL-4: 10–2000 pg ml⁻¹; IFN-γ: 10–10 000 pg ml⁻¹) and samples were added, followed by 100 µl of biotinylated anti-cytokine-detection antibody (11 µg ml⁻¹). After washes, 100 µl tetramethylbenzidine (TMB) substrate was added for 20 min. The color reaction was stopped by addition of 50 µl of 0.2 M H₂SO₄ and optical densities were read for each well with a microplate reader set to 405 nm.

Intracellular Detection of Cytokines by Flow Cytometry

Interferon-γ (IFN-γ) and interleukin-4 (IL-4) cytokines were detected in T-helper and total T-cells with fluorochrome-conjugated, monoclonal antibodies specific for T-helper cells (CD4/PerCP) or pan-T-cell (CD3/PerCP), interferon-γ (IFN-γ/FITC) and interleukin-4 (IL-4/PE), as previously described (Duramad et al., 2004). The percent Th1 was determined as the number of IFN-γ positive cells divided by the total number of T-helper cells, and the percent Th2 was determined as the number of IL-4 positive cells divided by the total T-helper cells.

Statistics

Student’s t-test was used to evaluate the observed difference between culture type (whole blood versus isolated lymphocytes) and to compare the observed difference between treatment types (LPS alone versus LPS and CPO combined treatment) (Stata, Version 6.0). For the subset of five subjects with repeated observations, a mixed linear model analysis (SAS Institute, Version 9.0) that accounted for repeated experiments with the same subjects was used to evaluate differences between the treatment conditions.

Results

Induction of IFN-γ by LPS and CPO in Human Blood Cultures

Treatment with LPS alone resulted in IFN-γ levels of 3110 and 3485 pg ml⁻¹ in whole blood (WB) and isolated lymphocyte (IL) cultures, respectively, from the same donor (Fig. 1). Treatment with the combination of LPS and CPO (≤100 µg ml⁻¹) resulted in IFN-γ levels of 6312 and 3540 pg ml⁻¹ in WB and IL cultures, respectively. IFN-γ levels were significantly higher (78%) in WB cultures treated with the combination of LPS and CPO, compared with LPS alone (P = 0.02) and furthermore, WB levels were more than twice that detected in IL cultures (P = 0.001). This initial finding indicated that CPO, at levels that are representative of environmental exposures, could lead to an increase in LPS-dependent induction of IFN-γ and that this effect is more pronounced in WB than IL cultures. Thus, for subsequent repeat experiments with multiple donors, the optimized WB culture protocol was used. Also, the study specifically examined the effect of low doses (1 µg ml⁻¹) of CPF, CPO, and TCP which are particularly relevant to realistic exposures observed in human populations (Whyatt et al., 2003).

Figure 1. Supernatant levels of IFN-γ in human whole blood (WB) versus isolated lymphocyte (IL) cultures from the same donor after treatment with LPS alone or in combination with chlorpyrifos-oxon (CPO) after 48 h. Single asterisk (*) indicates significant difference between LPS and LPS + CPO treatment groups for whole blood cultures (P = 0.02) and significant difference between whole blood and isolated lymphocytes when treated with LPS + CPO (P = 0.001).
Combined Treatment with OPs and LPS

To examine whether the observed potentiation of LPS induction of IFN-γ was specific to CPO or can be also observed with CPF and TCP, multiple experiments were carried out with repeated blood samples from five different subjects. For LPS treatment alone the average IFN-γ level was detected by ELISA at 1363 pg ml\(^{-1}\) (Fig. 2). These experiments demonstrated a wide range of inter- and intra-individual variability in IFN-γ in response to LPS treatment over time (range 137–2507 pg ml\(^{-1}\)). Thus, a linear mixed model that accounted for both sources of variability was used to analyse the data from 16 experiments. Combined treatment with LPS with CPF at concentrations of 1, 10 and 100 µg ml\(^{-1}\) resulted in increased levels of IFN-γ: 1678, 1930 and 2179 pg ml\(^{-1}\), respectively. The same experiment with CPO also increased IFN-γ expression to 2179, 2061 and 1648 pg ml\(^{-1}\), respectively. Statistical analysis confirmed that two low doses of CPO (1 and 10 µg ml\(^{-1}\)), in combination with LPS, significantly increased IFN-γ expression (60% and 51%, respectively) compared with LPS alone (\(P < 0.05\)). Combined treatment with LPS and TCP, however, these changes were not statistically significant.

IL-4 Induction by Der p1 and Pesticides

IL-4 cytokine production was detectable in the supernatants of Der p1-treated cultures (200 pg ml\(^{-1}\); 7 experiments, data not shown). However, in contrast to potentiation of IFN-γ production by CPO and LPS, the pesticide treatment in combination with Der p1 did not affect induction of IL-4 or with two other pesticides (data not shown).

Intracellular Cytokine Production

Flow cytometric detection of intracellular cytokine expression was employed to determine whether T-helper cells were the main source of IFN-γ found in cultures from one donor after treatment with CPO and LPS. A total of 16157 lymphocytes were selected by a circular gate (Fig. 3A) for analysis of intracellular cytokine production. Of this population of lymphocytes, 5100 CD4-positive T-helper cells (31.6%) were detected by fluorescent antibody (Fig. 3B). Of these T-helper cells, less than 1% (5/5100) expressed intracellular IFN-γ in response to LPS + CPO induction (Fig. 3C). This is
Figure 3. Flow cytometric detection of intracellular IFN-γ production by T-helper cells after treatment with CPO and LPS. In the scatter plot of all cells (A) a circular gate was placed around the live lymphocyte population, based on size (FS, forward scatter) and granularity (SS, side scatter). This lymphocyte population is acquired to (B). The percentages for CD4 antigen (of the total lymphocytes) are above each linear gate. In (C) each CD4-positive subgroup gated is examined for expression of IFN-γ. The percentages of Th1 cells are of the total CD4+ population.
significantly less than the number of cells recorded after treatment with the positive control PMA/ionomycin, for which 9% (1375/5194) of T-helper cells expressed IFN-γ. Thus, T-helper cells may not be the source of IFN-γ and other cell types (e.g. CD8+ cytotoxic T-cells, macrophages, natural killer cells etc.) should be considered as potential sources of IFN-γ.

Discussion

In order to model the exposure patterns for agricultural workers and their families, blood was obtained from human volunteers and the samples exposed to the organophosphate pesticide chlorpyrifos (CPF) or its metabolites CPO and TCP, in the presence or absence of LPS or Der p1. Our results showed that while OP pesticides did not induce IFN-γ cytokine production in cell cultures, combined treatment with low doses of CPO (1 µg ml⁻¹) and LPS increased IFN-γ production significantly in comparison with LPS alone (Figs 2 and 3). These results suggest that the OP metabolite, at low, environmentally relevant doses, can potentiate expression of IFN-γ; the signature Th1 cytokine, in vitro.

In the only previous study of OPs and cytokines, Nakashima et al. (2002) demonstrated that the OP fenitrothion inhibited production of IFN-γ and IL-2 in a dose-dependent manner (1–500 µM). Hooghe et al. (2000) reported inhibition of cytokines IFN-γ with atrazine, but not mecoprop, simazine and diuron. In a separate study, pyrethroids (e.g. natural pyrethrum and synergist piperonyl-butoxide) inhibited IFN-γ and IL-4 expression in human samples obtained from atopic and non-atopic donors (Diel et al., 2003). We are not aware of any other published studies that have examined the effects of combined CPO and LPS treatment on human immune function using whole blood cultures. In rats, Singh and Jiang (2003) showed that chronic exposure to low levels of the organothiophosphate insecticide, acephate, enhanced responses to LPS induction of pro-inflammatory cytokines IL-1β, TNF-α, and IFN-γ. Gordon et al. (1997) and Gordon and Rowsey (1999) have shown in rats that CPF induction of cytokines is similar to LPS induction of inflammatory cytokines and that TNF-α, but not IL-6, is the important cytokine mediator of these inflammatory fever-like symptoms.

Although our in vitro findings indicate that combined LPS and CPO treatment enhanced induction of cytokines over LPS alone, they failed to show a similar relationship of Der p1 and CPO. Dong et al. (1998) demonstrated that rats treated with the carbamate insecticide carbaryl, had enhanced allergic responses to Der p1 (Dong et al., 1998). Sato et al. (1998) also showed that the phenothoate, chlorimuron and paraquat (but not 12 other pesticides tested) increased histamine release in mice pre-sensitized with LPS. Collectively, these finding suggest that some pesticides can augment immune responses to known immunogens LPS and Der p1.

The use of the whole blood culture method to test for immunomodulatory agents is becoming more common (Hermann et al., 2003). This method has been used to evaluate cytokine responses to pyrogens (Hartung et al., 1996) and has been proposed to screen for immunotoxic compounds (Langezaal et al., 2001; Hermann et al., 2003). We used both whole blood and isolated lymphocyte cultures to examine the effects of exposures to the different mixtures of cells present in each culture. The observed responses were greater using whole blood cultures. There are several advantages to using the whole blood system. First, compared with isolated lymphocytes, whole blood cultures contain a more complete mixture of the immune cells involved in generation of the immune response to an antigen and for an in vitro system, are more representative of an in vivo system. Our finding that T-helper cells are not the likely source of IFN-γ further supports this premise, since monocytes and macrophages, also producers of IFN-γ, usually are not found in isolated lymphocyte cultures.

Additional advantages of whole blood cultures include the ease of culture and the low volume of blood required to initiate these cultures, a clear advantage for pediatric studies that have limited access to blood samples (Duramad et al., 2004).

Our preliminary finding that CPO enhances LPS induction of IFN-γ suggests that up-regulation may occur along the LPS-Toll-like-receptor (TLR)-4 signaling pathway. CPF has been shown to up-regulate the protein kinase-C signaling (PKC) pathway (Bagchi et al., 1997) and more recently, CPO has been shown to potentiate diacylglycerol-induced extracellular signal-regulated kinase (ERK 44/42) along this pathway (Bomser and Casida, 2000; Bomser et al., 2002). Since PKC is a critical signaling event in oxidative stress and pro-inflammatory cytokine synthesis, increased PKC activity is a possible explanation for the increased IFN-γ observed in our experimental results. The interaction observed between CPO and LPS, which results in an increased Type 1 immune response, should be further investigated, particularly since the combination of OP pesticides and endotoxin is common in rural, agricultural communities.

Acknowledgements—We would like to thank the volunteers who donated blood samples for our study and Laura Pfleger, Alan Ho and Ben Bresler for providing phlebotomy services. We appreciate helpful comments from Drs John Balmes, Michael Lipsitt, Janet Machter, Asa Bradman and Mark Schlissel. We acknowledge the assistance of Dr Alan Hubbard and Jennie Ferber with the statistical analysis. This research was supported by the Toxic Substances Traineeship Program at UC Berkeley and grants from EPA (RD 83171001) and NIEHS (P01 ES009605), Edmund and Elizabeth Preston Award for Children’s Environmental Health, and Russell M. Grossman Medical Research Endowment. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH, or EPA.
References


